ADIKAVI NANNAYA UNIVERSITY:: RAJAMAHENDRAVARAM II BTech (CSE) II Semester BTCSE401 COMPUTER ORGANIZATION MODEL QUESTION PAPER

	Time: 3hrs.	Max.Marks: 75
	SECTION-A (4 x 15=60) Answer ALL Questions	
1	(a) Explain different addressing modes with examples. Or	[15M]
	(b) Explain Design of Accumulator logic.	[15M]
2	(a) Write notes on asynchronous data transfer. Or	[15M]
	(b) Explain direct memory access.	[15M]
3	 (a) Explain in brief main memory concepts. (b) Explain in brief cache memory. 	[08M] [07M]
	(c) Explain the concepts of virtual memory?	[15M]
4	(a) Explain 8085 Microprocessor Architecture? Or	[15M]
	(b) Explain Intel 8085 Microprocessor Instructions?	
	SECTION-B (5 x 3=15M) Answer any FIVE Questions 5 Write a short notes on	

- a) Stack Organization.
- **b**) Instruction cycle.
- c) I/O vs memory bus.
- d) Priority interrupts.
- e) Associative memory.
- f) Memory protection.
- g) Write short notes on 8085 pin configuration.
- **h**) Intel 8085 instructions of Arithmetic and logic group.

ADIKAVI NANNAYA UNIVERSITY:: RAJAMAHENDRAVARAM II BTech (CSE) II Semester BTCSE402 DESIGN AND ANALYSIS OF ALGORITHMS MODEL QUESTION PAPER

Time: 3hrs.

Max.Marks: 75

[7M]

SECTION-A (4 x 15=60) Answer ALL Questions

- 1. a) Write an algorithm for Matrix multiplication and find the Time complexity of it. [8M] **b**) Differentiate between Big oh, Omega and Theta Notation [7M] Or c) What are the features of an efficient algorithm. Explain with an example. [8M] d) Find the time complexity of an algorithm which finds the factorial of a number using recursion. [7M] 2. a) What is meant by Divide and Conquer approach. Write the General method of Divide – And – Conquer approach. [7M] b) Write Divide – And – Conquer recursive Merge sort algorithm and derive the time complexity of this algorithm. [**8M**] Or c) Write with an example of Prim's algorithm and Kruskal Algorithm. [10M] d) Derive the Best, Worst and Average time complexities of Quick sort technique. [5M] **3.** a) Solve the following instance of 0/1 Knapsack problem using Dynamic programming n =3; (W1, W2, W3) = (3, 5, 7); (P1, P2, P3) = (3, 7, 12); M = 4.[**8M**] **b**) Discuss the 4 – queen's problem. Draw the portion of the state space tree for n = 4queens using backtracking algorithm. [**7**M] Or c) What is a Hamiltonian Cycle? Explain how to find Hamiltonian path and cycle using backtracking algorithm. [**7**M] d) Discuss Sum of subset problem and Travelling Sales Person Problem [**8M**] 4. a) Explain FIFO Branch and Bound solution [7M] **b**) Explain how the traveling salesperson problem is solved by using LC Branch and Bound. [**8M**] Or c) What are the differences between backtracking and branch and bound solutions? [8M]
 - **d**) Explain the LC branch and bound algorithm

SECTION-B (5 x 3=15M) Answer any FIVE Questions

- 5. a) What is Amortized analysis? Explain.
 - **b**) Describe the Algorithm Analysis of Binary Search.
 - c) Describe Single source shortest paths
 - d) State the Job Sequencing Deadline Problem.
 - e) Define i) Principles of optimality ii) Feasible solution iii) Optimal solution.
 - f) Explain about Reliability Design.
 - g) Write about NP-Hard and NP-Complete Problems.
 - **h**) Distinguish between fixed tuple sized and variable tuple sized state space tree organization.

ADIKAVI NANNAYA UNIVERSITY:: RAJAMAHENDRAVARAM II BTech (CSE) II Semester BTCSE403 DATABASE MANAGEMENT SYSTEMS MODEL QUESTION PAPER

Time: 3hrs.	Max.Marks: 75
SECTION – A (4x15=60 Marks) Answer ALL Questions 1. a) Write a brief note on advantages and applications of DBMS	[8 M]
b) Briefly explain about Three-Schema Architecture with neat diagram	[7 M]
Or	
c.) Briefly discuss about Database System Environment with neat diagram	[15M]
2. a) Explain in detail about various key constraints used in database system v	with examples [10M]
b) Explain about Relational Algebra Set Operations with examples	[5M]
Or	
\mathbf{c}) Explain in detail about Tuple and Domain Relational Calculus with example	nples [15M]
3. a) What is Normalization? Briefly explain the types of normal forms with a	an example [15M]
Or	
b) Explain how a dynamic multi level indexes can be created using B Tree	es and
B+ Trees with example.	[15M]
4. a) What is Serializability? Briefly explain the different types of Serializability?	lity [15M]
Or	
b) Briefly explain the following Concurrency Control Techniques	
i) Two Phase Locking Protocol	[8M]
ii) Validation Concurrency Control	[7 M]
SECTION – B (5x3=15 Marks) Answer any FIVE Questions	
5. a) Define DBMS, Schema, Instance. What is weak entity? Explain with	ith example
b) What is Data Independence? Specify the classification	
c) Give a brief note on Insert, Delete, and Update Queries in SQL wit	th examples
d) What is View in SQL? Create a view and perform DML operation	s on it
e) What is Functional Dependency? Classify.	
f) Give a brief note on Buffering Blocks	
g) What is Transaction? Discuss Characteristics of Transaction	

h) Give a brief note on Shadow Paging technique.

ADIKAVI NANNAYA UNIVERSITY:: RAJAMAHENDRAVARAM II BTech (CSE) II Semester BTCSE404 FORMAL LANGUAGES AND AUTOMATA THEORY MODEL QUESTION PAPER

Time: 3hrs.	Max.Marks: 75
SECTION – A (4x15=60 Marks) Answer ALL Questions	
1. a) Define DFA and NFA with examples. Differentiate them?	[7M]
b) Design a DFA which accepts Odd number of 0's and 1's?	[8M]
Or	
c) State and prove equivalence of NFA and DFA?	[15M]
2. a) Closure Properties of Regular Sets?	[10M]
b) Decision Algorithm for Regular Sets? Or	[5M]
c) State and prove pumping lemma for Regular Sets? Give one exam	ple? [15M]
3. a) Design a PDA for the language $L=\{WCW^R/W \text{ in } (a,b)^*\}$?	[15M]
Or	
b) Design a PDA for the language $L=\{WW^R/W \text{ in } (a,b)^*\}$?	[15M]
4. a) Explain Universal Turing machines?	[15M]
Or	
b) Discuss the Halting Problem of TM?	[15M]
SECTION – B (5x3=15 Marks) Answer any FIVE Questions	
5. Write a short note on	
a) Function and relation	
b) Sets	
c) Regular expressions	

- d) Context free languages
- e) Pushdown automata
- f) Chomsky hierarchy
- g) Turing machines
- **h**) Undecidability of PCP

ADIKAVI NANNAYA UNIVERSITY:: RAJAMAHENDRAVARAM II BTech (CSE) II Semester BTCSE405 SOFTWARE ENGINEERING MODEL QUESTION PAPER

Time: 3hrs.

Max.Marks: 75

[15M]

[8M]

[7M]

SECTION – A (4x15=60 Marks) Answer ALL Questions

a) Explain software development process models with a suitable example project for each model.

Or

b) Explain project management activities.

2. a) Briefly explain the requirements process. Consider a web application for conducting mid examinations. List major use cases for this system along with goals, preconditions and exception scenarios. [15M]

Or

- b) What are the different architectural styles? Consider an online shopping website which provides many different features to perform various tasks. Suggest a suitable architectural style for this. [15M]
 a) Explain structured design methodology with an example. [15M]
- **3.** a) Explain structured design methodology with an example. Or
- b) Explain programming principles and guidelines [15M]
 4. a) Describe how the measure cyclomatic complexity is derived and its usage during testing with an example. [15M]

Or

- **b**) Explain any 2 black box test case design methods.
- c) Explain any 2 white box test case design methods.

SECTION – B (5x3=15 Marks) Answer any FIVE Questions

5.

- a) Define software engineering.
- **b**) Write a short notes on the problem of scale.
- c) Defect injection and removal cycle.
- d) Top Down vs Bottom Up effort estimation approach.
- e) Consider a program containing many modules. If a global variable x must be used to share data between two modules A and B, how would you design the interfaces of these modules to minimise coupling.
- f) Pair programming
- g) Define error, fault and failure
- **h**) Give relevant test cases for a login form.

ADIKAVI NANNAYA UNIVERSITY::RAJAMAHENDRAVARAM BTCSE406 II BTech (CSE) II SEMESTER DISCRETE MATHEMATICAL STRUCTURES MODEL QUESTION PAPER

Max Time: 3 Hours	Max Marks: 75
SECTION-A $(4 \times 15 = 60 \text{ M})$ Answer ALL questions	
 1 a) i) Prove that {[p → (q ∨ r)] ∧ (~ q)} → (p → r) is a tautology. ii) Prove the validity of the following argument Lions are dangerous animals 	[8M]
There are fions Therefore, there are dangerous animals. Or	[7M]
 b) i) Prove that 6ⁿ⁺² + 7²ⁿ⁺¹ is divisible by 43 for each positive integer n Mathematical induction. ii) Prove the following example by contradiction. The 10 integers 1,2,3,,10 are randomly positioned around a circula the sum of some set of 3 consecutively positioned numbers is at least 	by using [8M] r wheel. Show that 17. [7M]
 2 a) i) How many ways can we get a sum of 4 or of 8 when two distinguishal How many ways can we get an even sum? ii) How many integral solutions are there to x₁ + x₂ + x₃ + x₄ + x₅ = where each x_i ≥ 2? 	ble dice are rolled? [8M] 20 [7M]
Or	
b. i) How many three-digit numbers are there which are even and have ii) Find the coefficient of X^{20} in $(X^3 + X^4 + X^5 + \dots)^5$.	no repeated digits? [8M] [7M]
3 a) i) Solve the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} = 0$ for $n \ge 2$. ii) Show that $n! \in O(n^n)$ and $n \log_2 n \in O(\log_2 n!)$.	[8M] [7M]
b) i) Find a solution to $a_n - a_{n-1} = 3(n-1)$ where $n \ge 1$ and where a_0 ii) Draw a poset diagram and determine all maximal and minimal elements $[D_{12};]$ and $[D_{20};]$.	ents for [7M]
4 a) i) Show that the following graphs are isomorphic.	[8M]
a a b c ii) Prove that a complete binary tree with n vertices the indices of the vertices the vertices the indices of the vertices	tices in the ℓ th

Or

b. i) Explain kruskal's Algorithm for finding a Minimal Spanning tree. [8M]ii) Find the Chromatic number of the "wheel" graph shown in below. [7M]

SECTION-B (5×3=15M) Answer any FIVE Questions

5

- a) If the product of two integers a and b is even then show that either a is even or b is even.
- **b**) Write the negation of the sentence" There is no integer x such that x is prime and x+6 is prime".
- c) How many ways can the letters of the English alphabet be arranged so that there are exactly 5 letters between the letters a and b.
- d) How many ways can a hand of 5 cards be selected from a deck of 52 cards.
- e) Solve $a_n 6a_{n-1} + 12a_{n-2} 8a_{n-3} = 0$ by generating functions.
- f) Draw the digraph for the relation R and compliment of a relation where R={(a,b),(b,c),(b,d),(d,a),(c,c)}.
- g) Find the Hamiltonian cycle in the following graph.

h) Prove that there does not exists a polyhedral graph with exactly seven edges.